Complex Fractions

A complex fraction is a fraction whose numerator or denominator or both contain fractions.

Two Methods for Simplifying Complex Fractions

The First Method	
Example:	Explanation:
Simplify the complex fraction: Solution: $\begin{aligned} & \frac{2}{\frac{5}{4}}+\frac{1}{3} \\ & \frac{2 \cdot \frac{1}{6}}{\frac{5 \cdot 3}{3 \cdot 3}}+\frac{1 \cdot 5}{3 \cdot 3}-\frac{1 \cdot 2}{6 \cdot 2} \\ &= \frac{\frac{6}{15}+\frac{5}{15}}{\frac{1}{12}-\frac{2}{12}} \\ &= \frac{11}{\frac{15}{12}} \\ &= \frac{11}{15} \div \frac{7}{12} \\ &= \frac{11}{15} \cdot \frac{12}{7} \\ &= \frac{11}{15} \cdot \frac{4}{5} \\ & 5 \end{aligned}$	Find the least common denominator for the top fractions: the LCD of 5 and 3 is 15 . Write each fraction as an equivalent fraction whose denominator is 15 . $\frac{2 \cdot 3}{5 \cdot 3}=\frac{6}{15} \quad \frac{1 \cdot 5}{3 \cdot 5}=\frac{5}{15}$ Find the least common denominator for the bottom fractions: the LCD of 4 of 6 is 12 . Write each fraction as an equivalent fraction whose denominator is 12 . $\frac{3 \cdot 3}{4 \cdot 3}=\frac{9}{12} \quad \frac{1 \cdot 2}{6 \cdot 2}=\frac{2}{12}$ Add 6 and 5 on the top. Keep the denominator the same. Subtract 9-2 on the bottom. Keep the denominator the same. Rewrite the division of these fractions using the \div symbol. Flip the second fraction and convert division into multiplication. Divide both 15 and 12 by 3 . Then multiply the remaining factors: $11 \cdot 4=44$ in the numerator. $5 \cdot 7=35$ in the denominator.

