$1=2$

Here is a bizarre proof of $1=2$.
And here is how it goes:

Let there be two positive unknown numbers a and b. And let these numbers be equal.	$a=b$
Now we will apply a sequence of operations to this equation: First, we will multiply both sides by a.	$\begin{aligned} a \cdot a & =a \cdot b \\ a^{2} & =a b \end{aligned}$
Next, we will subtract b^{2} from both sides.	$a^{2}-b^{2}=a b-b^{2}$
Factor the left side using the formula $a^{2}-b^{2}=(a+b)(a-b)$. Factor the right side by factoring out b.	$(a+b)(a-b)=b(a-b)$
Since both sides contain ($a-b$), divide both sides of the equation by $(a-b)$.	$\frac{(a+b)(a-b)}{(a-b)}=\frac{b(a-b)}{(a-b)}$
Because the initial problem states that $a=b$, we can replace a with b.	$\begin{aligned} & a+b=b \\ & b+b=b \end{aligned}$
Combine the like terms on the left side.	$2 b=b$
Now, divide both sides by b, and cancel b.	$\frac{2 b}{b}=\frac{b}{b}$
After canceling b, we get that $2=1$.	$2=1$

Now, we all know that 2 is not equal to 1 . So, what happened in the process that gave us this bizarre answer?
It is the step where we divided both sides by $(a-b)$:

$$
\frac{(a+b)(a-b)}{(a-b)}=\frac{b(a-b)}{(a-b)}
$$

In the beginning, we stated that $a=b$. So, if we subtract $a-b$, the answer will be equal to zero. And we know that division by zero is undefined (can't divide by zero). So, this step is invalid:

$$
\frac{(a+b)(a-b)}{(a-b)}=\frac{b(a-b)}{(a-b)}
$$

Therefore, we happily conclude that $1 \neq 2$.

