1 = 2

Here is a bizarre proof of 1 = 2.

And here is how it goes:

Let there be two positive unknown numbers <i>a</i>	a = b
and <i>b</i> . And let these numbers be equal.	
Now we will apply a sequence of operations to	$a \cdot a = a \cdot b$
	u u – u b
this equation:	2 1
First, we will multiply both sides by <i>a</i> .	$a^2 = ab$
Next, we will subtract b^2 from both sides.	$a^2 - b^2 = ab - b^2$
- ,	
Factor the left side using the formula	(a + b)(a - b) - b(a - b)
	(a+b)(a-b) = b(a-b)
$a^2 - b^2 = (a + b)(a - b).$	
Factor the right side by factoring out <i>b</i> .	
Since both sides contain $(a - b)$, divide both	(a+b)(a-b) $b(a-b)$
	$\frac{(a+b)(a-b)}{(a-b)} = \frac{b(a-b)}{(a-b)}$
sides of the equation by $(a - b)$.	(a-b) $(a-b)$
	a + b = b
Because the initial problem states that $a = b$, we	
•	b + b = b
can replace a with b .	b + b = b
Combine the like terms on the left side.	2b = b
Now, divide both sides by <i>b</i> , and cancel <i>b</i> .	2 b b
	$\frac{1}{h} = \frac{1}{h}$
	0 0
After canceling h we get that $2 - 1$	0 1
After canceling b , we get that $2 = 1$.	2 = 1

Now, we all know that 2 is not equal to 1. So, what happened in the process that gave us this bizarre answer? It is the step where we divided both sides by (a - b):

$$\frac{(a+b)(a-b)}{(a-b)} = \frac{b(a-b)}{(a-b)}$$

In the beginning, we stated that a = b. So, if we subtract a - b, the answer will be equal to zero. And we know that division by zero is undefined (can't divide by zero). So, this step is invalid:

$$\frac{(a+b)(a-b)}{(a-b)} = \frac{b(a-b)}{(a-b)}$$

Therefore, we happily conclude that $1 \neq 2$.