Week 9

Sections 3.6, 4.1, 4.2

HW8: 34, 38, 44, 52 (р. 309)
8, 12, 24, 30 (р. 336-337)
26, 28 (р. 342)

Review Exercises

Find all horizontal and vertical asymptotes (if any).

$$
f(x)=\frac{x^{3}-8 x}{x^{4}-16}
$$

Solution

1. Find the vertical asymptotes (by setting the denominator equal to zero).

$$
\begin{gathered}
x^{4}-16=0 \\
\left(x^{2}+4\right)\left(x^{2}-4\right)=0 \\
x^{2}+4=0 \quad \text { or } x^{2}-4=0 \\
x^{2}=-4 \quad \text { or } \quad(x+2)(x-2)=0 \\
\text { No solution } \begin{array}{r}
\text { or } \quad \\
x+2=0 \text { or } x-2=0 \\
x=-2 \quad \text { or } \quad x=2
\end{array}
\end{gathered}
$$

The vertical asymptotes are $x=-2$ and $x=2$.
2. Find the horizontal asymptote.

The horizontal asymptote is $y=0$
(because the exponent on the numerator is less than the exponent on the denominator).

Find all horizontal and vertical asymptotes (if any).

$$
f(x)=\frac{(x+1)(2 x-3)}{(x-2)(4 x+7)}
$$

Solution

1. Find the vertical asymptotes (by setting the denominator equal to zero).

$$
\begin{aligned}
& (x-2)(4 x+7)=0 \\
& x-2=0 \text { or } 4 x+7=0 \\
& x=2 \text { or } 4 x=-7 \\
& x=2 \text { or } \quad x=-\frac{7}{4}
\end{aligned}
$$

The vertical asymptotes are:

$$
x=2 \quad \text { and } \quad x=-\frac{7}{4}
$$

2. Find the horizontal asymptote.

The numerator: $(x+1)(2 x-3)=2 x^{2}-x-3$
The highest exponent is 2 .
The leading coefficient is $\mathbf{2}$.

The denominator: $(x-2)(4 x+7)=4 x^{2}-x-14$
The highest exponent is 2.
The leading coefficient is 4 .

Because both exponents of the numerator and the denominator are the same, we need to divide the coefficients to find the horizontal asymptote.

$$
\begin{aligned}
& y=\frac{2}{4} \\
& y=\frac{1}{2}
\end{aligned}
$$

Find the intercepts and asymptotes, and then sketch a graph of the rational function and state the domain and range.

$$
f(x)=\frac{4 x-4}{x+2}
$$

Solution

1. Find the x-intercepts.

Replace y with 0 .

$$
\frac{4 x-4}{x+2}=0
$$

A fraction is equal to zero only because the numerator is equal to zero:

$$
\begin{gathered}
4 x-4=0 \\
4 x=4 \\
x=1
\end{gathered}
$$

The x -intercept is 1
2. Find the y-intercept.

Replace x with 0 .

$$
\begin{gathered}
y=\frac{4 \cdot 0-4}{0+2} \\
y=-\frac{4}{2} \\
y=-2
\end{gathered}
$$

The y -intercept is -2 .
3. Find the vertical asymptotes (by setting the denominator equal to zero).

$$
\begin{gathered}
x+2=0 \\
x=-2
\end{gathered}
$$

The vertical asymptote is: $x=-2$
4. Find the horizontal asymptote.

Because both exponents of the numerator and the denominator are the same, we need to divide the leading coefficients to find the horizontal asymptote.

$$
y=\frac{4}{1}=4
$$

The horizontal asymptote is: $y=4$
Cont. on the next page...
5. Get additional points between the intercepts and vertical asymptotes.

Find the intercepts and asymptotes, and then sketch a graph of the rational function and state the domain and range.

$$
f(x)=\frac{4 x-8}{(x-4)(x+1)}
$$

Solution

1. Find the x-intercepts.

Replace y with 0 .

$$
\frac{4 x-8}{(x-4)(x+1)}=0
$$

A fraction is equal to zero only because the numerator is equal to zero:

$$
\begin{gathered}
4 x-8=0 \\
4 x=8 \\
x=2
\end{gathered}
$$

The x -intercept is 2
2. Find the y-intercept.

Replace x with 0 .

$$
\begin{gathered}
y=\frac{4 \cdot 0-8}{(0-4)(0+1)} \\
y=\frac{-8}{-4} \\
y=2
\end{gathered}
$$

The y-intercept is 2 .
3. Find the vertical asymptotes (by setting the denominator equal to zero).

$$
\begin{gathered}
(x-4)(x+1)=0 \\
x-4=0 \quad \text { or } \quad x+1=0 \\
x=4 \quad \text { or } \quad x=-1
\end{gathered}
$$

The vertical asymptotes are: $x=4$ and $x=-1$
4. Find the horizontal asymptote.

The horizontal asymptote is $y=0$
(because the exponent on the numerator is less than the exponent on the denominator).

Cont. on the next page...
5. Get additional points between the intercepts and vertical asymptotes.

x	y
-3	-1.4
-2	-2.7
0	2
3	-1
5	2

Domain: $(-\infty,-1) \cup(-1,4) \cup(4, \infty)$
Range: $(-\infty, \infty)$

Use a calculator to evaluate the function at the indicated values. Round your answers to three decimals (that is three digits after the decimal point).

$$
f(x)=2^{x-3}
$$

$$
f\left(\frac{1}{2}\right), \quad f(2.5), \quad f(-1), \quad f\left(\frac{1}{4}\right)
$$

Solution

$$
\begin{gathered}
f\left(\frac{1}{2}\right)=2^{\frac{1}{2}-3} \approx 0.17677669 \ldots \approx 0.177 \\
f(2.5)=2^{2.5-3} \approx 0.7071067 \ldots \approx 0.707 \\
f(-1)=2^{-1-3}=0.0625 \approx 0.063 \\
f\left(\frac{1}{4}\right)=2^{\frac{1}{4}-3} \approx 0.14865 \ldots \approx 0.149
\end{gathered}
$$

Note:
On some of the calculators you may have to type the exponent in parentheses. For example: $2^{\wedge}(1 / 2-3)$

Sketch the graph of the function by making a table of values. Use a calculator if necessary.

$$
f(x)=2^{x}
$$

Solution

Find the exponential function $f(x)=a^{x}$ whose graph is given.

Solution

The graph has the point: $\left(2, \frac{1}{16}\right)$

$$
x=2, \quad y=\frac{1}{16}
$$

Use these numbers to find a.

$$
\begin{gathered}
a^{x}=y \\
a^{2}=\frac{1}{16} \\
a=\sqrt{\frac{1}{16}} \\
a=\frac{1}{4}
\end{gathered}
$$

So, the exponential function is:

$$
f(x)=\left(\frac{1}{4}\right)^{x}
$$

Graph the function not by plotting the points, but by starting from the basic exponential function. State the domain, range and asymptote.

$$
f(x)=5^{-x}
$$

Solution

The graph of $f(x)=5^{x}$ is obtained by reflecting the graph of $y=5^{x}$ about the y-axis.

Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Asymptote: $y=0$

The amount of salt in a barrel at time t is given by $Q(t)=12\left(1-e^{-0.02 t}\right)$ where t is measured in minutes and $Q(t)$ is measured in pounds.
a. How much salt is in the barrel after 5 minutes?
b. How much salt is in the barrel after 10 minutes?
c. Draw a graph of the function $Q(t)$?
d. Use the graph in part (c) to determine the value that the amount of salt in the barrel approaches as t becomes large. Is this what you would expect?

Solution

a. $Q(5)=12\left(1-e^{-0.02 \cdot 5}\right) \approx 1.142$
b. $Q(10)=12\left(1-e^{-0.02 \cdot 10}\right) \approx 2.175$
c.

d. The amount of salt of salt approaches 12 lb .

The population of a certain species of bird behaves according to the logistic growth model

$$
n(t)=\frac{4000}{0.5+26.4 e^{-0.044 t}}
$$

where t is measured in years.
a. Find the initial bird population.
b. Draw a graph of the function $n(t)$.
c. What size does the population approaches time goes on?

Solution

a. $n(0)=\frac{4000}{0.5+26.4 e^{-0.044 \cdot 0}}=148.7$
b.

c. From the graph, the population approaches 8000 birds as t increases.

