Week 8

Sections 3.2, 3.3, 3.4

HW8: 18, 20, 32, 52 (p. 266-267) 6, 28, 30 (p. 273-274)

6, 16, 18 (p. 283)

Review Exercises					
Sketch the graph of the polynomial function. Make sure your graph shows all intercepts and					
exhibits the proper end behavior.					
f(x) = x(x-4)(x+5)					
Solution					
1. Find the function's end behavior.					
If we would multiply all the factors and remove the parentheses, then the term with					
the largest exponent would be x^3 . Resource the coefficient of x^3 is positive, and the exponent is odd, the graph will fall to					
the left and will rise to the right					
2 Find the x-intercents					
Replace v with 0.					
x(x-4)(x+5) = 0					
x = 0 or $x - 4 = 0$ or $x + 5 = 0$					
x = 0 or $x = 4$ or $x = -5$					
3. <u>Find the y-intercept.</u>					
Replace x with 0.					
y = 0(0 - 4)(0 + 5)					
y = 0					
-41.25					
x y					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
18.5					
-24.75					
41.25					
-49.5					

Sketch the graph of the polynomial function. Make sure your graph shows all intercepts and exhibits the proper end behavior.

f(x) = (x+1)(x-4)(2x+5)

<u>Solution</u>

- Find the function's end behavior. If we would multiply all the factors and remove the parentheses, then the term with the largest exponent would be 2x³. Because the coefficient 2 of x³ is positive, and the exponent is odd, the graph will fall to the left and will rise to the right.
- 2. <u>Find the x-intercepts.</u> Replace *y* with 0.

$$(x+1)(x-4)(2x+5) = 0$$

x+1=0 or x-4=0 or 2x+5=0
x=-1 or x=4 or 2x=-5
x=-1 or x=4 or x=-\frac{5}{2}

3. Find the y-intercept. Replace x with 0.

$$y = (0+1)(0-4)(2 \cdot 0 + 5)$$

y = (1)(-4)(5)
y = -20

4. <u>Get additional points</u> between the intercepts.

Factor the polynomial and use the factored form to find the zeros. Then sketch the graph.

<u>Solution</u>

$$f(x) = x(x^2 - x - 12)$$

 $f(x) = x^3 - x^2 - 12x$

$$f(x) = x(x-4)(x+3)$$

- 1. Find the function's end behavior. Because the coefficient of x^3 is positive, and the exponent is odd, the graph will fall to the left and will rise to the right.
- 2. <u>Find the x-intercepts.</u> Replace *y* with 0.

$$x(x-4)(x+3) = 0$$

x = 0 or x-4 = 0 or x+3 = 0
x = 0 or x = 4 or x = -3

3. Find the y-intercept. Replace x with 0.

$$y = 0(0 - 4)(0 + 3)$$

 $y = 0$

4. <u>Get additional points</u> between the intercepts.

The graph of a polynomial function is given. From the graph, find a) the x- and y-intercepts, and b) the coordinates of all local extrema.

<u>Solution</u>

a) x - intercepts: -2, 1; y - intercept: -1

b) Local Maximum: (1, 0); Local Minimum: (-1, -2)

Two polynomials P and D are given. Use either synthetic or long division to divide P(x) by D(x), and express the quotient P(x)/D(x) in the form

$$\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$

$$P(x) = 8x^{3} + 4x^{2} - 10x + 9$$
$$D(x) = 2x - 3$$

<u>Solution</u>

$$\frac{4x^2 + 8x + 7}{2x - 3 \cdot 8x^3 + 4x^2 - 10x + 9}$$

$$\frac{-(8x^3 - 12x^2)}{16x^2 - 10x}$$

$$\frac{-(16x^2 - 24x)}{14x + 9}$$

$$\frac{-(14x - 21)}{30}$$

$$\frac{P(x)}{D(x)} = 4x^2 + 8x + 7 + \frac{30}{2x - 3}$$

Find the quotient and the remainder using synthetic division.

$$\frac{5x^2-4}{x-3}$$

Solution

3 5	0	- 4
	15	45
5	15	41

5x + 15 R41

Find the quotient and the remainder using synthetic division.

$$\frac{x^3 + 2x^2 + 2x + 1}{x + 2}$$

<u>Solution</u>

List all possible rational zeros given by the Rational Zeros Theorem.

 $R(x) = x^3 + 5x - 6$

<u>Solution</u>

$$p = \pm 1, \pm 2, \pm 3, \pm 6$$
$$q = \pm 1$$
$$\frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 6$$

All the real zeros of the given polynomial are integers. Find the zeros, and write the polynomial in factored form.

<u>Solution</u>

$$P(x) = x^{3} + 2x^{2} - 13x + 10$$

$$p = \pm 1, \pm 2, \pm 5, \pm 10$$

$$q = \pm 1$$

$$\frac{p}{q} = \pm 1, \pm 2, \pm 5, \pm 10$$

Use synthetic division to test the possible rational roots and find an actual root.

Try number 1.

1 1	2	- 13	10
	1	3	- 10
1	3	- 10	0

The remainder is zero, so 1 is a rational root, and x - 1 is a factor.

Factor completely and solve the equation to find the zeros.

$$(x-1)(x^{2} + 3x - 10) = 0$$

(x-1)(x+5)(x-2) = 0
x-1=0 or x+5=0 or x-2=0
x = 1 or x = -5 or x = 2

All the real zeros of the given polynomial are integers. Find the zeros, and write the polynomial in factored form.

<u>Solution</u>

$$P(x) = x^{3} - 19x - 30$$

$$p = \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$$

$$q = \pm 1$$

$$\frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$$

Use synthetic division to test the possible rational roots and find an actual root.

Try number -2.

-2 1	0	- 19	- 30
	- 2	4	30
1	- 2	- 15	0

The remainder is zero, so -2 is a rational root, and x + 2 is a factor.

Factor completely and solve the equation to find the zeros.

$$(x+2)(x^{2}-2x-15) = 0$$

(x+2)(x+3)(x-5) = 0
$$x+2 = 0 \quad or \quad x+3 = 0 \quad or \quad x-5 = 0$$

$$x = -2 \quad or \quad x = -3 \quad or \quad x = 5$$