Week 8

Sections 3.2, 3.3, 3.4

HW8: 18, 20, 32, 52 (p. 266-267)

$$
\text { 6, 28, } 30 \text { (p. 273-274) }
$$

6, 16, 18 (p. 283)

Review Exercises

Sketch the graph of the polynomial function. Make sure your graph shows all intercepts and exhibits the proper end behavior.

$$
f(x)=x(x-4)(x+5)
$$

Solution

1. Find the function's end behavior.

If we would multiply all the factors and remove the parentheses, then the term with the largest exponent would be x^{3}.
Because the coefficient of x^{3} is positive, and the exponent is odd, the graph will fall to the left and will rise to the right.
2. Find the x-intercepts.

Replace y with 0 .

$$
\begin{gathered}
x(x-4)(x+5)=0 \\
x=0 \quad \text { or } \quad x-4=0 \quad \text { or } \quad x+5=0 \\
x=0 \quad \text { or } \quad x=4 \quad \text { or } \quad x=-5
\end{gathered}
$$

3. Find the y-intercept.

Replace x with 0 .

$$
\begin{gathered}
y=0(0-4)(0+5) \\
y=0
\end{gathered}
$$

4. Get additional points between the intercepts.

x	y
-6	-60
-3	42
-1	20
1	-18
2	-28
5	50

Sketch the graph of the polynomial function. Make sure your graph shows all intercepts and exhibits the proper end behavior.

$$
f(x)=(x+1)(x-4)(2 x+5)
$$

Solution

1. Find the function's end behavior.

If we would multiply all the factors and remove the parentheses, then the term with the largest exponent would be $2 x^{3}$.
Because the coefficient 2 of x^{3} is positive, and the exponent is odd, the graph will fall to the left and will rise to the right.
2. Find the x-intercepts.

Replace y with 0 .

$$
\begin{aligned}
& (x+1)(x-4)(2 x+5)=0 \\
x+1= & \text { or } \quad x-4=0 \quad \text { or } \quad 2 x+5=0 \\
x=-1 & \text { or } \quad x=4 \quad \text { or } \quad 2 x=-5 \\
x=-1 & \text { or } \quad x=4 \quad \text { or } \quad x=-\frac{5}{2}
\end{aligned}
$$

3. Find the y-intercept.

Replace x with 0 .

$$
\begin{gathered}
y=(0+1)(0-4)(2 \cdot 0+5) \\
y=(1)(-4)(5) \\
y=-20
\end{gathered}
$$

4. Get additional points between the intercepts.

x	y
-3	-14
-2	6
2	-54
5	90

Factor the polynomial and use the factored form to find the zeros. Then sketch the graph.

$$
f(x)=x^{3}-x^{2}-12 x
$$

Solution

$$
\begin{gathered}
f(x)=x\left(x^{2}-x-12\right) \\
f(x)=x(x-4)(x+3)
\end{gathered}
$$

1. Find the function's end behavior.

Because the coefficient of x^{3} is positive, and the exponent is odd, the graph will fall to the left and will rise to the right.
2. Find the x -intercepts.

Replace y with 0 .

$$
\begin{gathered}
x(x-4)(x+3)=0 \\
x=0 \quad \text { or } \quad x-4=0 \quad \text { or } \quad x+3=0 \\
x=0 \quad \text { or } \quad x=4 \text { or } \quad x=-3
\end{gathered}
$$

3. Find the y-intercept.

Replace x with 0 .

$$
\begin{gathered}
y=0(0-4)(0+3) \\
y=0
\end{gathered}
$$

4. Get additional points between the intercepts.

The graph of a polynomial function is given. From the graph, find a) the x - and y-intercepts, and b) the coordinates of all local extrema.

Solution
a) x-intercepts: $-2,1 ; \quad y$-intercept: -1
b) Local Maximum: $(1,0)$; Local Minimum: $(-1,-2)$

Two polynomials P and D are given. Use either synthetic or long division to divide $P(x)$ by $D(x)$, and express the quotient $P(x) / D(x)$ in the form

$$
\begin{gathered}
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)} \\
P(x)=8 x^{3}+4 x^{2}-10 x+9 \\
D(x)=2 x-3
\end{gathered}
$$

Solution

$$
\begin{array}{r}
2 x-3) \frac{4 x^{2}+8 x+7}{8 x^{3}+4 x^{2}-10 x+9} \\
\frac{-\left(8 x^{3}-12 x^{2}\right)}{16 x^{2}-10 x} \\
\frac{-\left(16 x^{2}-24 x\right)}{14 x+9} \\
\frac{-(14 x-21)}{30} \\
\frac{P(x)}{D(x)}=4 x^{2}+8 x+7+\frac{30}{2 x-3}
\end{array}
$$

Find the quotient and the remainder using synthetic division.

$$
\frac{5 x^{2}-4}{x-3}
$$

Solution

$3 \mid 5$	0	-4
\mid	15	45
5	15	41
	$5 x+15$	$R 41$

Find the quotient and the remainder using synthetic division.

$$
\frac{x^{3}+2 x^{2}+2 x+1}{x+2}
$$

Solution

$$
x^{2}+2 R-3
$$

List all possible rational zeros given by the Rational Zeros Theorem.

$$
R(x)=x^{3}+5 x-6
$$

Solution

$$
\begin{gathered}
p= \pm 1, \pm 2, \pm 3, \pm 6 \\
q= \pm 1 \\
\frac{p}{q}= \pm 1, \pm 2, \pm 3, \pm 6
\end{gathered}
$$

All the real zeros of the given polynomial are integers. Find the zeros, and write the polynomial in factored form.

$$
P(x)=x^{3}+2 x^{2}-13 x+10
$$

Solution

$$
\begin{gathered}
p= \pm 1, \pm 2, \pm 5, \pm 10 \\
q= \pm 1 \\
\frac{p}{q}= \pm 1, \pm 2, \pm 5, \pm 10
\end{gathered}
$$

Use synthetic division to test the possible rational roots and find an actual root.
Try number 1.

$1 \mid 1$	2	-13	10
\mid	1	3	-10
1	3	-10	0

The remainder is zero, so 1 is a rational root, and $x-1$ is a factor.

Factor completely and solve the equation to find the zeros.

$$
\begin{gathered}
\quad(x-1)\left(x^{2}+3 x-10\right)=0 \\
(x-1)(x+5)(x-2)=0 \\
x-1=0 \quad \text { or } \quad x+5=0 \quad \text { or } \quad x-2=0 \\
x=1 \quad \text { or } x=-5 \quad \text { or } \quad x=2
\end{gathered}
$$

All the real zeros of the given polynomial are integers. Find the zeros, and write the polynomial in factored form.

$$
P(x)=x^{3}-19 x-30
$$

Solution

$$
\begin{gathered}
p= \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30 \\
q= \pm 1 \\
\frac{p}{q}= \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30
\end{gathered}
$$

Use synthetic division to test the possible rational roots and find an actual root.
Try number -2 .

The remainder is zero, so -2 is a rational root, and $x+2$ is a factor.

Factor completely and solve the equation to find the zeros.

$$
\begin{gathered}
(x+2)\left(x^{2}-2 x-15\right)=0 \\
(x+2)(x+3)(x-5)=0 \\
x+2=0 \quad \text { or } \quad x+3=0 \quad \text { or } \quad x-5=0 \\
x=-2 \quad \text { or } \quad x=-3 \quad \text { or } \quad x=5
\end{gathered}
$$

