Week 7

Sections 3.1

HW7: 6, 8, 10, 18, 36, 44, 54, 58 (p. 252-253)

Review Exercises			
The graph of a quadratic function is given.			
a) Find the coordinates of the vertex and the x - and y -intercepts.			
b) Find the maximum or minimum value of f.			
c) Find the domain and range of f.			
Solution			
a) Vertex: $(3,4)$			
x-intercepts: 1 and 5			
y -intercept: -5 (not seen on the graph, but assumed)			
b) Max: 4			
No Min.			
c) Domain: $(-\infty, \infty)$			
Range: $(-\infty, 4]$			

The graph of a quadratic function is given.
a) Find the coordinates of the vertex and the x - and y-intercepts.
b) Find the maximum or minimum value of f.
c) Find the domain and range of f.

Solution

a) Vertex: $(1,-3)$
x-intercepts: approximately -0.2 and 2.2
y-intercept: -1
b) No Max.

No Min: -3
c) Domain: $(-\infty, \infty)$

Range: $[3, \infty)$

A quadratic function is given.

$$
f(x)=x^{2}-2 x+3
$$

a) Express f in standard form.
b) Find the vertex and x - and y -intercepts of f.
c) Sketch a graph of f.
d) Find the domain and range of f.

Solution
a) $f(x)=x^{2}-2 x+3$

$$
\begin{aligned}
& f(x)=\left(x^{2}-2 x+\left(\frac{2}{2}\right)^{2}\right)+3-\left(\frac{2}{2}\right)^{2} \\
& f(x)=\left(x^{2}-2 x+\left(\frac{2}{2}\right)^{2}\right)+3-\left(\frac{2}{2}\right)^{2} \\
& f(x)=\left(x^{2}-2 x+1\right)+3-1 \\
& f(x)=(x-1)^{2}+2
\end{aligned}
$$

b) Vertex: $(1,2)$
x-intercepts:
(replace y with 0 and solve for x)
$(x-1)^{2}+2=0$
$(x-1)^{2}=-2$
No solution, because $(x-2)^{2}$ cannot be equal to a negative number.
Therefore, there are no x-intercepts.
y-intercept:
(replace x with 0 and solve for y)
$y=(0-1)^{2}+2$
$y=1+2$
$y=3$

Cont. on the next page.

A quadratic function is given.

$$
f(x)=-x^{2}+6 x+4
$$

e) Express f in standard form.
f) Find the vertex and x - and y -intercepts of f.
g) Sketch a graph of f.
h) Find the domain and range of f.

Solution
d) $f(x)=-x^{2}+6 x+4$

$$
\begin{aligned}
& f(x)=-\left(x^{2}-6 x+\left(\frac{6}{2}\right)^{2}\right)+4+\left(\frac{6}{2}\right)^{2} \\
& f(x)=-\left(x^{2}-6 x+\left(\frac{6}{2}\right)^{2}\right)+4+\left(\frac{6}{2}\right)^{2} \\
& f(x)=-\left(x^{2}-6 x+9\right)+4+9 \\
& f(x)=-(x-3)^{2}+13
\end{aligned}
$$

Cont. on the next page.
e) Vertex: $(3,13)$
x-intercepts:
(replace y with 0 and solve for x)
$-(x-3)^{2}+13=0$
$-(x-3)^{2}=-13$
$(x-3)^{2}=13$
$x-3= \pm \sqrt{13}$
$x=3 \pm \sqrt{13}$
y -intercept:
(replace x with 0 and solve for y)
$y=-(x-3)^{2}+13$
$y=-(0-3)^{2}+13$
$y=-9+13$
$y=4$
f)

e) Domain: $(-\infty, \infty)$

Range: $(-\infty, 13]$

Find the maximum or minimum value of the function.

$$
f(x)=-1+4 x+2 x^{2}
$$

Solution

Rearrange the terms.

$$
f(x)=2 x^{2}+4 x-1
$$

The leading coefficient 2 is positive, therefore, we will have a minimum value.

$$
\begin{gathered}
x=-\frac{b}{2 a}=-\frac{4}{2 \cdot 2}=-1 \\
f(-1)=2(-1)^{2}+4(-1)-1 \\
f(-1)=2-4-1 \\
f(-1)=-3 \\
\text { Min }=-3
\end{gathered}
$$

Find the maximum or minimum value of the function.

$$
f(x)=3 x(x-2)+5
$$

Solution

Remove the parentheses.

$$
f(x)=3 x^{2}-6 x+5
$$

The leading coefficient 3 is positive, therefore, we will have a minimum value.

$$
\begin{gathered}
x=-\frac{b}{2 a}=-\frac{-6}{2 \cdot 3}=1 \\
f(1)=3 \cdot 1^{2}-6 \cdot 1+5 \\
f(1)=3-6+5 \\
f(1)=2 \\
\text { Min }=2
\end{gathered}
$$

A soft-drink vendor at a popular beach analyzes his sales records and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by

$$
P(x)=-0.002 x^{2}+4 x-1800
$$

What is his maximum profit per day, and how many cans must he sell for maximum profit?

Solution

$$
\begin{gathered}
x=-\frac{4}{2(-0.002)}=-\frac{4}{-0.004}=1000 \\
P(1000)=-0.002(1000)^{2}+4(1000)-1800 \\
P(x)=\$ 200
\end{gathered}
$$

At a certain vineyard it is found that each grape vine produces about 12 lb of grapes in a season when about 750 vines are planted per acre. For each additional vine that is planted, the production of each vine decreases by about 1 percent. So the number of pounds of grapes produced per acre is modeled by $A(n)=(750+n)(12-0.01 n)$ where n is the number of additional vines planted. Find the number of vines that should be planted to maximize grape production.

Solution

Remove the parentheses.

$$
\begin{gathered}
A(n)=(750+n)(12-0.01 n) \\
A(n)=9000-7.5 n+12 n-0.01 n^{2} \\
A(n)=-0.01 n^{2}+4.5 n+9000 \\
n=-\frac{b}{2 a}=-\frac{4.5}{2(-0.01)}=225
\end{gathered}
$$

$$
750+225=975 \text { vines }
$$

