Week 5

Sections 2.3, 2.4, 2.6

HW5: 8, 10, 16, 32, 44, 46 (р. 179-180)
$8,10,12,16$ (p. 188)
$8,10,12,20,30,32,34,36,46,48$ (p. 206-207)

Solution
a. From the graph:

$$
\begin{gathered}
h(-2)=1 \\
h(0)=-1 \\
h(2)=3 \\
h(3)=4
\end{gathered}
$$

b. Domain $=[-3,4], \quad$ Range $=[-1,4]$
c. $h(x)=3$, when $x=-3$, and $x=2$, and $x=4$
d. $h(x) \leq 3$, when x is $[-3,2]$, and $x=4$
e. $h(3)=4 \quad h(-3)=3$

Net Change $=4-3=1$

Graphs of the functions f and g are given.
a) Which is larger, $f(0)$ or $g(0)$?
b) Which is larger, $f(-3)$ or $g(-3)$?
c) For which values of x is $f(x)=g(x)$?
d) Find the values of x for which $f(x) \leq g(x)$.
e) Find the values of x for which $f(x)>g(x)$.

Solution
a) $f(0)=3$ and $g(0)=1 / 2$, so $f(0)$ is larger.
b) $f(-3)=-1$ and $g(-3)=2$, so $g(-3)$ is larger.
c) $f(x)=g(x)$ for $x=-2$ and $x=2$
d) $f(x) \leq g(x)$ for the intervals: $[-4,-2]$ and $[2,3]$.
e) $f(x)>g(x)$ for the interval: $(-2,2)$.

A function f is given.

$$
f(x)=4-x^{2}, \quad-2 \leq x \leq 2
$$

a) Sketch the graph of f.
b) Use the graph to find the domain and range of f.

Solution
a)

b) Domain: $[-2,2]$, Range: $[0,4]$

The graph of a function f is given. Use the graph to estimate the following.
a) The domain and range of f.
b) The intervals on which f is increasing and on which f is decreasing.

Solution

a) Domain: $[-1,4]$, Range: $[-1,3]$
b) The function is increasing on $(-1,1)$ and $(2,4)$

The function is decreasing on $(1,2)$

The graph of a function f is given. Use the graph to estimate the following.
a) All maximum and minimum values of the function and the value of x at which each occurs.
b) The intervals on which the function is increasing and on which the function is decreasing.

Solution

a) Local maximum: 2 at $x=0$,

Local minimum: -1 at $x=-2$ and 0 at $x=2$
b) The function is increasing on $(-2,0)$ and $(2, \infty)$

The function is decreasing on $(-\infty,-2)$ and $(0,2)$
The graph of a function f is given. Use the graph to estimate the following.
c) All the local maximum and minimum values of the function and the value of x at which each occurs.
d) The intervals on which the function is increasing and on which the function is decreasing.

Solution

c) Local maximum: 0 at $x=0$, and 1 at $x=3$

Local minimum: -2 at $x=-2$ and -1 at $x=1$
d) The function is increasing on $(-2,0)$ and $(1,3)$

The function is decreasing on $(-\infty,-2),(0,1)$, and $(3, \infty)$

The graph of a function is given. Determine:
a) The net change
b) The average rate of change between the indicated points of the graph.

Solution

a) $f(4)-f(1)=5-3=2$
b) Use the points $(1,3)$ and $(4,5)$

$$
\text { Average rate of change }=\frac{5-3}{4-1}=\frac{2}{3}
$$

The graph of a function is given. Determine:
c) The net change
d) The average rate of change between the indicated points of the graph.

Solution

c) $f(5)-f(0)=2-6=-4$
d) Use the points $(0,6)$ and $(5,2)$

$$
\text { Average rate of change }=\frac{2-6}{5-0}=\frac{-4}{5}
$$

$$
\begin{aligned}
& \text { A function is given. Determine: } \\
& \text { a) The net change } \\
& \text { b) The average rate of change between the given values of the variables. } \\
& \qquad \begin{array}{r}
f(x)=3 x-2 \quad x=2, \quad x=3 \\
\text { Solution } \\
\text { a) The net change: } \\
\qquad \begin{array}{r}
f(3)-f(2)=(3 \cdot 3-2)-(3 \cdot 2-2) \\
=(9-2)-(6-2)
\end{array} \\
=3
\end{array}
\end{aligned}
$$

b) The average rate of change:

$$
\frac{f(3)-f(2)}{3-2}=\frac{3}{1}=3
$$

A function is given. Determine:
c) The net change
d) The average rate of change between the given values of the variables.

$$
f(x)=1-4 x^{2} \quad x=-1, \quad x=0
$$

Solution
c) The net change:

$$
\begin{gathered}
f(0)-f(-1)=\left(1-4 \cdot 0^{2}\right)-\left(1-4 \cdot(-1)^{2}\right) \\
=(1-0)-(1-4) \\
=1-(-3) \\
=4
\end{gathered}
$$

d) The average rate of change:

$$
\frac{f(0)-f(-1)}{0-(-1)}=\frac{4}{1}=4
$$

Suppose the graph of f is given. Describe how the graph of each function can be obtained from the graph of f.
a) $f(x+2)$
b) $f(x)+3$

Solution

a) The graph of $f(x+2)$ is obtained by shifting the graph of $f(x)$ to the left 2 units.
b) The graph of $f(x)+3$ is obtained by shifting the graph of $f(x)$ upward 3 units.

Suppose the graph of f is given. Describe how the graph of each function can be obtained from the graph of f.
c) $-f(x)$
d) $\frac{1}{5} f(x)$

Solution
c) The graph of $-f(x)$ is obtained by reflecting the graph of $f(x)$ about the x-axis.
d) The graph of $\frac{1}{5} f(x)$ is obtained by shrinking the graph of $f(x)$ vertically by a factor of $\frac{1}{5}$.

Suppose the graph of f is given. Describe how the graph of each function can be obtained from the graph of f.
e) $f(x+2)+4$
f) $f(x-8)-5$

Solution

e) The graph of $f(x+2)+4$ is obtained by shifting the graph of $f(x)$ to the left 2 units and upward 4 units.
f) The graph of $f(x-8)-5$ is obtained by shifting the graph of $f(x)$ to the right 8 units and downward 5 units.

Explain how the graph of g is obtained from the graph of f.
a) $f(x)=x^{4}, g(x)=(x-5)^{4}$
b) $f(x)=x^{4}, g(x)=x^{4}-5$

Solution

a) The graph of $g(x)=(x-5)^{4}$ is obtained by shifting the graph of $f(x)$ to the right 5 units.
b) The graph of $g(x)=x^{4}-5$ is obtained by shifting the graph of $f(x)$ downward 5 units.

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

$$
f(x)=x^{2}-2
$$

Solution

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

$$
f(x)=\sqrt{x}+4
$$

Solution

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

$$
f(x)=(x+2)^{2}
$$

Solution

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

$$
f(x)=\sqrt{x-6}
$$

Solution

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

$$
f(x)=\sqrt{x+5}-2
$$

Solution

Sketch the graph of the function, not by plotting points, but by starting with the graph of a standard function and applying transformations.

$$
f(x)=1-\sqrt{x+5}
$$

Solution

