Week 3

Sections 1.6, 1.8, 1.9

HW3: 8, 22, 24, 28, 30, 34, 40, 64 (p. 64) 16, 18, 30, 36, 38, 60 (p. 89) 28, 36, 60, 68, 88, 90 (p. 102-104)

Review Exercises				
Find the real and the imaginary parts of the complex number.				
3 + 4i				
3 is the real part				
4 is the imaginary part				
Evaluate the sum and write the result in the form $a + bi$.				
$(2+7i) + \left(-8 + \frac{1}{2}i\right)$				
<u>Solution</u> Combine the real parts together and combine the imaginary parts together.				
$(2+7i) + \left(-8 + \frac{1}{2}i\right)$				
$= -6 + \frac{15}{2}i$				
Evaluate the difference and write the result in the form $a + bi$.				
(-3+2i) - (-5+9i) Solution				
Distribute the negative symbol in front of the second parenthesis. Combine the real parts together and combine the imaginary parts together.				
(-3+2i) - (-5+9i)				
= -3 + 2i + 5 - 9i				
= 2 - 7i				

Evaluate the product and write the result in the form a + bi.

-5(4+6i)

<u>Solution</u>

Use distributive property to remove the parentheses.

-5(4+6i)

= -20 - 30i

Evaluate the product and write the result in the form a + bi.

(7-i)(4+2i)

<u>Solution</u>

Use FOIL. Replace i^2 with -1.

Combine the real parts together and combine the imaginary parts together.

(7 - i)(4 + 2i)= 28 + 14i - 4i - 2i² = 28 + 14i - 4i - 2(-1) = 28 + 14i - 4i + 2 = 30 + 10i

Evaluate the product and write the result in the form a + bi.

(2+5i)(2-5i)

<u>Solution</u>

2 + 5i and 2 - 5i are complex conjugates.

Use the formula $(a + bi)(a - bi) = a^2 + b^2$.

$$(2+5i)(2-5i)$$

= 2² + 5²
= 4 + 25
= 29

Evaluate the quotient and write the result in the form a + bi.

2		51
1	_	2i

<u>Solution</u>

Multiply the top and the bottom by the conjugate of the denominator, which is 1 + 2i. On the top use FOIL. On the bottom use the formula $(a + bi)(a - bi) = a^2 + b^2$. Replace i^2 with -1. Combine the real parts together and combine the imaginary parts together.

$$\frac{2-3i}{1-2i}$$

$$=\frac{(2-3i)(1+2i)}{(1-2i)(1+2i)}$$

$$=\frac{2+4i-3i-6i^2}{1^2+2^2}$$

$$=\frac{2+i+6}{5}$$

$$=\frac{8+i}{5}$$

$$=\frac{8+i}{5}$$

Find all the solutions of the equation and express them in the form a + bi. $x^2 - 6x + 10 = 0$ <u>Solution</u>

$$a = 1 \qquad b = -6 \qquad c = 10$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 10}}{2 \cdot 1}$$
$$= \frac{6 \pm \sqrt{-4}}{2}$$
$$= \frac{6 \pm 2i}{2}$$
$$= 3 \pm i$$

Solve the linear inequality. Express the solution using interval notation and graph the solution set. 2x - 3 < -15

Solution

$$2x - 3 < -15 + 3 + 3$$

$$2x < -12$$

$$\frac{2x}{2} < \frac{-12}{2}$$

$$x < -6$$

The solution set is $(-\infty, -6)$.

 ∞

Solve the linear inequality. Express the solution using interval notation and graph the solution set.

 $4 - 3x \le -14$

Solution

Solve for x, flip the inequality symbol when dividing by a negative.

 $-\infty$

$$4 - 3x \leq -14$$

$$-4 \qquad -4$$

$$-3x \leq -18$$

$$\frac{-3x}{-3} \geq \frac{-18}{-3}$$

$$x \geq 6$$
-\infty 0 \quad 6 \quad \infty 0
The solution set is [6, \infty).

Solve the linear inequality. Express the solution using interval notation and graph the solution set.

Solution

 $-7 \le 5x - 2 < 8$ $-7 \le 5x - 2 < 8$ +2 + 2 + 2 $-5 \le 5x < 10$ $\frac{-5}{5} \le \frac{5x}{5} < \frac{10}{5}$ $-1 \le x < 2$ < ----- [------] -----> -1 = 0 = 2

The solution set is [-1, 2).

Solve the linear inequality. Express the solution using interval notation and graph the solution set.

<u>Solution</u>

Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set.

Solution

 $(x+2)(x-3) \ge 0$

Find the values of x for which the factors of the left-side are 0.

x + 2 = 0 or x - 3 = 0x = -2 or x = 3

Set up the number line and choose test points in each interval. Find the intervals for which the left-side of the inequality is positive or zero (\geq) .

The solution set is $(-\infty, -2] \cup [3, \infty)$

Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set.

$$\frac{5x-10}{x+3} < 0$$

Solution

Find the values of x for which the numerator and the denominator on the left-side are 0.

$$5x - 10 = 0 \quad or \quad x + 3 = 0 5x = 10 \quad or \quad x = -3 x = 2 \quad or \quad x = -3$$

Set up the number line and choose test points in each interval. Find the intervals for which the left-side of the inequality is negative (<).

-∞ -4 -	3 <mark>0</mark> 2	2 3 ∞	
<		>	
Test Point -4	Test Point 0	Test Point 3	
5(-4) - 10	$5 \cdot 0 - 10$	$5 \cdot 3 - 10$	
$\frac{5(-4) - 10}{-4 + 3}$	$\frac{3 \ 0 \ 10}{0 + 3}$	$\frac{3}{3}$ $\frac{3}{3}$ $\frac{10}{3}$	
		_	
$=\frac{-30}{-1}$	$=\frac{-10}{3}$	$=\frac{5}{6}$	
-1	3	0	
= 30	$=-\frac{10}{10}$	Positive	
	$=-\frac{1}{3}$		
Positive	Negative		
Negative			

The solution set is (-3, 2)

The pair of points (-2, 1) and (4, -6) is given.

- a. Plot the points in the coordinate plane.
- b. Find the distance between them.
- c. Find the midpoint of the segment that joins them.

Which of the points A(6, 7) or B(-5, 8) is closer to point C(3, 2).

<u>Solution</u>

$$d(AC) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(3 - 6)^2 + (2 - 7)^2}$
= $\sqrt{(-3)^2 + (-5)^2}$
= $\sqrt{9 + 25}$
= $\sqrt{34}$
 ≈ 5.8
 $d(BC) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

$$d(BC) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(3 - (-5))^2 + (2 - 8)^2}$
= $\sqrt{8^2 + (-6)^2}$
= $\sqrt{64 + 36}$
= $\sqrt{100}$
= 10

The point A is closer to point C.

Make a table of values, and sketch the graph of the equation.

y = |x + 2|

<u>Solution</u>

Find the center and radius of the circle and sketch its graph. $(x+3)^2 + (x+1)^2 = 16$ **Solution** The center is (-3, -1). The radius is r = 4. 5 4 3 2 1 -8 -5 -4 -3 -2 -1 0 2 3 -6 4 -1 -2 -3 -5 -6 Find the equation of the circle that satisfies the given conditions. Center (6, -4)Radius r = 8<u>Solution</u> $(x-h)^2 + (y-k)^2 = r^2$ $(x-6)^2 + (y-(-4))^2 = 8^2$ $(x-6)^2 + (y+4)^2 = 64$