Week 3

Sections 1.6, 1.8, 1.9

HW3: 8, 22, 24, 28, 30, 34, 40, 64 (p. 64)
$16,18,30,36,38,60$ (p. 89)
28, 36, 60, 68, 88, 90 (р. 102-104)

Review Exercises

Find the real and the imaginary parts of the complex number.

$$
3+4 i
$$

Solution
3 is the real part
4 is the imaginary part
Evaluate the sum and write the result in the form $a+b i$.

$$
(2+7 i)+\left(-8+\frac{1}{2} i\right)
$$

Solution
Combine the real parts together and combine the imaginary parts together.

$$
\begin{gathered}
(2+7 i)+\left(-8+\frac{1}{2} i\right) \\
=-6+\frac{15}{2} i
\end{gathered}
$$

Evaluate the difference and write the result in the form $a+b i$.

$$
(-3+2 i)-(-5+9 i)
$$

Solution

Distribute the negative symbol in front of the second parenthesis.
Combine the real parts together and combine the imaginary parts together.

$$
\begin{gathered}
(-3+2 i)-(-5+9 i) \\
=-3+2 i+5-9 i \\
=2-7 i
\end{gathered}
$$

Evaluate the product and write the result in the form $a+b i$.

$$
-5(4+6 i)
$$

Solution
Use distributive property to remove the parentheses.

$$
\begin{aligned}
& -5(4+6 i) \\
= & -20-30 i
\end{aligned}
$$

Evaluate the product and write the result in the form $a+b i$.

$$
(7-i)(4+2 i)
$$

Solution

Use FOIL.
Replace i^{2} with -1 .
Combine the real parts together and combine the imaginary parts together.

$$
\begin{gathered}
(7-i)(4+2 i) \\
=28+14 i-4 i-2 i^{2} \\
=28+14 i-4 i-2(-1) \\
=28+14 i-4 i+2 \\
=30+10 i
\end{gathered}
$$

Evaluate the product and write the result in the form $a+b i$.

$$
(2+5 i)(2-5 i)
$$

Solution
$2+5 i$ and $2-5 i$ are complex conjugates.
Use the formula $(a+b i)(a-b i)=a^{2}+b^{2}$.

$$
\begin{gathered}
(2+5 i)(2-5 i) \\
=2^{2}+5^{2} \\
=4+25 \\
=29
\end{gathered}
$$

Evaluate the quotient and write the result in the form $a+b i$.

$$
\frac{2-3 i}{1-2 i}
$$

Solution
Multiply the top and the bottom by the conjugate of the denominator, which is $1+2 i$.
On the top use FOIL. On the bottom use the formula $(a+b i)(a-b i)=a^{2}+b^{2}$.
Replace i^{2} with -1 . Combine the real parts together and combine the imaginary parts together.

$$
\begin{gathered}
=\frac{\frac{2-3 i}{1-2 i}}{(1-2 i)(1+2 i)} \\
=\frac{2+4 i-3 i-6 i^{2}}{1^{2}+2^{2}} \\
=\frac{2+i+6}{5} \\
=\frac{8+i}{5} \\
=\frac{8}{5}+\frac{1}{5} i
\end{gathered}
$$

Find all the solutions of the equation and express them in the form $a+b i$.

$$
x^{2}-6 x+10=0
$$

Solution

$$
\begin{gathered}
a=1 \quad b=-6 \quad c=10 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
=\frac{6 \pm \sqrt{(-6)^{2}-4 \cdot 1 \cdot 10}}{2 \cdot 1} \\
=\frac{6 \pm \sqrt{-4}}{2} \\
=\frac{6 \pm 2 i}{2} \\
=3 \pm i
\end{gathered}
$$

Solve the linear inequality. Express the solution using interval notation and graph the solution set.

$$
4-3 x \leq-14
$$

Solution

Solve for x, flip the inequality symbol when dividing by a negative.

$$
\begin{array}{r}
4-3 x \leq-14 \\
-4 \\
-4
\end{array}
$$

$$
-3 x \leq-18
$$

$$
\frac{-3 x}{-3} \geq \frac{-18}{-3}
$$

$$
x \geq 6
$$

The solution set is $[6, \infty)$.

$$
\begin{aligned}
& \text { set. } \\
& 2 x-3<-15 \\
& \text { Solution } \\
& 2 x-3<-15 \\
& +3+3 \\
& 2 x<-12 \\
& \frac{2 x}{2}<\frac{-12}{2} \\
& x<-6 \\
& \text { The solution set is }(-\infty,-6) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve the linear inequality. Express the solution using interval notation and graph the solution } \\
& \text { set. } \\
& \qquad \begin{array}{r}
-7 \leq 5 x-2<8 \\
\text { Solution } \\
\qquad \begin{array}{r}
-7 \leq 5 x-2<8 \\
+2 \\
-2
\end{array} \\
\qquad \begin{array}{l}
-5 \leq 5 x<10
\end{array} \\
\frac{-5}{5} \leq \frac{5 x}{5}<\frac{10}{5} \\
-1 \leq x<2
\end{array} \\
& \qquad \begin{array}{l}
\text { <----------------------|--------------)------>> } \\
2
\end{array}
\end{aligned}
$$

The solution set is $[-1,2)$.

$$
\begin{aligned}
& \text { Solve the linear inequality. Express the solution using interval notation and graph the solution } \\
& \text { set. } \\
& -\frac{1}{2} \leq \frac{3-2 x}{3}<\frac{1}{5} \\
& \text { Solution } \\
& L C D=30 \\
& \text { Multiply all three parts of the inequality by the LCD. } \\
& \left(-\frac{1}{2}\right) \cdot 30 \leq\left(\frac{3-2 x}{3}\right) \cdot 30<\left(\frac{1}{5}\right) \cdot 30 \\
& -15 \leq 10(3-2 x)<6 \\
& -15 \leq 30-20 x<6 \\
& -30-30-30 \\
& -45 \leq-20 x<-24 \\
& \frac{-45}{-20} \geq \frac{-20 x}{-20}>\frac{-24}{-20} \\
& \frac{9}{4} \geq x>\frac{6}{5} \\
& \frac{6}{5}<x \leq \frac{9}{4} \\
& \text { The solution set is }\left(\frac{6}{5}, \frac{9}{4}\right] \text {. }
\end{aligned}
$$

Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set.

$$
(x+2)(x-3) \geq 0
$$

Solution
Find the values of x for which the factors of the left-side are 0 .

$$
\begin{gathered}
x+2=0 \quad \text { or } \quad x-3=0 \\
x=-2
\end{gathered} \quad \text { or } \quad x=3
$$

Set up the number line and choose test points in each interval.
Find the intervals for which the left-side of the inequality is positive or zero (\geq).

The solution set is $(-\infty,-2] \cup[3 . \infty)$

Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set.

$$
\frac{5 x-10}{x+3}<0
$$

Solution
Find the values of x for which the numerator and the denominator on the left-side are 0 .

$$
\begin{array}{rll}
5 x-10=0 & \text { or } & x+3=0 \\
5 x=10 & \text { or } & x=-3 \\
x=2 & \text { or } & x=-3
\end{array}
$$

Set up the number line and choose test points in each interval.
Find the intervals for which the left-side of the inequality is negative $(<)$.

The solution set is $(-3,2)$

The pair of points $(-2,1)$ and $(4,-6)$ is given.
a. Plot the points in the coordinate plane.
b. Find the distance between them.
c. Find the midpoint of the segment that joins them.

Solution

a.

b.

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
=\sqrt{(4-(-2))^{2}+(-6-1)^{2}} \\
=\sqrt{6^{2}+(-7)^{2}} \\
=\sqrt{36+49} \\
=\sqrt{85}
\end{gathered}
$$

c.

$$
\begin{gathered}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
=\left(\frac{-2+4}{2}, \frac{1+(-6)}{2}\right) \\
=\left(\frac{2}{2}, \frac{-5}{2}\right) \\
=\left(1,-\frac{5}{2}\right)
\end{gathered}
$$

Which of the points $A(6,7)$ or $B(-5,8)$ is closer to point $C(3,2)$.

Solution

$$
\begin{gathered}
d(A C)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
=\sqrt{(3-6)^{2}+(2-7)^{2}} \\
=\sqrt{(-3)^{2}+(-5)^{2}} \\
=\sqrt{9+25} \\
=\sqrt{34} \\
\approx 5.8 \\
d(B C)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
=\sqrt{(3-(-5))^{2}+(2-8)^{2}} \\
=\sqrt{8^{2}+(-6)^{2}} \\
=\sqrt{64+36} \\
=\sqrt{100} \\
=10
\end{gathered}
$$

The point A is closer to point C.
Make a table of values, and sketch the graph of the equation.

$$
y=|x+2|
$$

Solution

x	y
-3	1
-2	0
-1	1
0	2
1	3
2	4

Make a table of values, and sketch the graph of the equation. Find the x - and y-intercepts, and test for symmetry.
a. $y=2-\sqrt{x}$
b. $x=|y|$

Solution

a.

x	y
0	2
1	1
4	0
9	-1

$x-$ intercept $=4$
$y-$ intercept $=2$
x-axis symmetry:
$-y=3-\sqrt{x}$ is not the
same as $y=3-\sqrt{x}$

The graph is not symmetric with respect to x-axis.
y - axis symmetry:
$y=3-\sqrt{-x}$ is not the same as $y=3-\sqrt{x}$

The graph is not symmetric with respect to y-axis.

Origin Symmetry:
$-y=3-\sqrt{-x}$ is not the same as $y=3-\sqrt{x}$

The graph is not symmetric with respect to the origin.

Find the center and radius of the circle and sketch its graph.

$$
(x+3)^{2}+(x+1)^{2}=16
$$

Solution
The center is $(-3,-1)$.
The radius is $r=4$.

Find the equation of the circle that satisfies the given conditions.
Center $(6,-4)$
Radius $r=8$
Solution

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-6)^{2}+(y-(-4))^{2}=8^{2} \\
(x-6)^{2}+(y+4)^{2}=64
\end{gathered}
$$

