Week 2

Sections 1.3, 1.4, 1.5

Review Exercises

Find the difference of the polynomials.

$$(5x^2 - 4x + 5) - (3x^2 + 2x - 7)$$

Solution

Distribute the negative sign in front of the second parenthesis and combine like terms.

$$(5x^{2} - 4x + 5) - (3x^{2} + 2x - 7)$$

$$= 5x^{2} - 4x + 5 - 3x^{2} - 2x + 7$$

$$= 2x^{2} - 6x + 12$$

Find the sum of the polynomials.

$$5(x+3) + 2(x-4)$$

Solution

Use distributive property to remove both parentheses and combine like terms.

$$5(x+3) + 2(x-4)$$

$$= 5x + 15 + 2x - 8$$

$$= 7x + 7$$

Multiply using FOIL.

$$(3x + 7y)(2x - y)$$

Solution

$$(3x + 7y)(2x - y)$$

$$= 6x^{2} - 3xy + 14xy - 7y^{2}$$

$$= 6x^{2} + 11xy - 7y^{2}$$

Multiply using special formulas.

$$(3x + 5y)^2$$

Solution

Use the formula $(a + b)^2 = a^2 + 2ab + b^2$.

$$(3x + 5y)^2 = 9x^2 + 30xy + 25y^2$$

Multiply using special formulas.

$$(4+x)(4-x)$$

Solution

Use the formula $(a + b)(a - b) = a^2 - b^2$.

$$(4+x)(4-x)$$
$$= 16-x^2$$

Factor out the common factor.

$$(x+3)^2 - 4(x+3)$$

Solution

Start by factoring out the greatest common factor, which is (x + 3).

$$(x+3)^2 - 4(x+3)$$

$$= (x+3)(x+3) - 4(x+3)$$

$$= (x+3)(x+3-4)$$

$$= (x+3)(x-1)$$

Factor the trinomial.

$$x^2 + 2x - 8$$

Solution

$$Sum = 2$$

 $Product = -8$
The numbers are 4 and -2

$$x^2 + 2x - 8$$

= $(x + 4)(x - 2)$

Factor the expression by grouping the terms.

$$x^3 + 4x^2 + x + 4$$

Solution

$$x^{3} + 4x^{2} + x + 4$$

$$= x^{2}(x + 4) + 1(x + 4)$$

$$= (x + 4)(x^{2} + 1)$$

Find the domain of the expression.

$$\frac{7x^2 - 10}{2x + 10}$$

Solution

Find what number/numbers make the denominator 0, and exclude them from the domain.

$$2x + 10 \neq 0$$
 $-10 - 10$

$$2x \neq -10$$

$$\frac{2x}{2} \neq \frac{-10}{2}$$

$$x \neq -5$$

The domain is $\{x | x \neq -5\}$.

Find the domain of the expression.

$$\frac{\sqrt{5x}}{x+3}$$

Solution

Find what numbers make the expression inside the square root nonnegative and include these numbers in the domain.

Then find what number/numbers make the denominator 0, and exclude them from the domain.

$$5x \ge 0$$
 and $x + 3 \ne 0$

$$\frac{5x}{5} \ge \frac{0}{5} \quad and \quad x + 3 \ne 0$$
$$-3 \quad -3$$

$$x \ge 0$$
 and $x \ne -3$

The first condition $x \ge 0$ already includes the second one, that $x \ne -3$.

So, the domain is $\{x | x \ge 0\}$.

Simplify the rational expression.

$$\frac{x^2 + 5x + 6}{x^2 + 8x + 15}$$

Solution

Factor each trinomial and cancel the common factors.

$$\frac{x^2 + 5x + 6}{x^2 + 8x + 15}$$

$$=\frac{(x+2)(x+3)}{(x+3)(x+5)}$$

$$=\frac{x+2}{x+5}$$

Simplify the rational expression.

$$\frac{x^2 + 7x + 12}{x^2 + 3x + 2} \cdot \frac{x^2 + 5x + 6}{2x + 6}$$

Solution

Factor each polynomial and cancel the common factors before multiplying.

$$\frac{x^2 + 7x + 12}{x^2 + 3x + 2} \cdot \frac{x^2 + 5x + 6}{2x + 6}$$

$$= \frac{(x+3)(x+4)}{(x+1)(x+2)} \cdot \frac{(x+2)(x+3)}{2(x+3)}$$

$$=\frac{(x+3)(x+4)}{2(x+3)}$$

Perform the subtraction and simplify.

$$\frac{3}{x+1} - \frac{1}{x+2}$$

Solution

The Least Common Denominator is: (x + 1)(x + 2)

$$\frac{3}{x+1} - \frac{1}{x+2}$$

$$= \frac{3(x+2)}{(x+1)(x+2)} - \frac{1(x+1)}{(x+1)(x+2)}$$

$$= \frac{3x+6-x-1}{(x+1)(x+2)}$$

$$= \frac{2x+5}{(x+1)(x+2)}$$

Perform the addition and simplify.

$$\frac{1}{x} + \frac{3}{x^2} + \frac{2}{x^3}$$

Solution

The Least Common Denominator is x^3 .

$$\frac{1}{x} + \frac{3}{x^2} + \frac{2}{x^3}$$

$$= \frac{1 \cdot x^2}{x \cdot x^2} + \frac{3 \cdot x}{x^2 \cdot x} + \frac{2}{x^3}$$

$$= \frac{x^2 + 3x + 2}{x^3}$$

Solve the equation.

$$7x - 5 = 3 + 5x$$

Solution

$$7x - 5 = 3 + 5x$$

$$7x - 5x = 3 + 5$$

$$2x = 8$$

$$\frac{2x}{2} = \frac{8}{2}$$

$$x = 4$$

Solve the equation.

$$\frac{1}{3}x - 2 = \frac{5}{6}x + 7$$

Solution

$$LCD = 6$$

Multiply both sides by the Least Common Denominator.

$$6\left(\frac{1}{3}x - 2\right) = 6\left(\frac{5}{6}x + 7\right)$$
$$2x - 12 = 5x + 42$$
$$-12 - 42 = 5x - 2x$$
$$-54 = 3x$$
$$\frac{-54}{3} = \frac{3x}{3}$$
$$-18 = x$$

Find all the real solutions of the equation by factoring.

$$x^2 + 7x + 12 = 0$$

Solution

Factor the trinomial, then set each factor equal to 0, and solve the simple equations.

$$Sum = 7$$

$$Product = 12$$

$$(x+3)(x+4) = 0$$

$$x+3 = 0 \text{ or } x+4 = 0$$

$$-3 - 3 - 4 - 4$$

$$x = -3 \text{ or } x = -4$$

Find all the real solutions of the equation by factoring.

$$2x^2 - 50 = 0$$

Solution

Factor the binomial, then set each factor equal to 0, and solve the simple equations.

$$2(x^{2}-25) = 0$$

$$2(x+5)(x-5) = 0$$

$$x+5 = 0 \quad or \quad x-5 = 0$$

$$-5 \quad -5 \quad +5 + 5$$

$$x = -5$$
 or $x = 5$

Find all the real solutions of the quadratic equation.

$$3x^2 + 6x - 5 = 0$$

Solution

$$a = 3$$
 $b = 6$ $c = -5$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-6 \pm \sqrt{36 - 4 \cdot 3 \cdot (-5)}}{2 \cdot 3}$$

$$=\frac{-6\pm\sqrt{96}}{6}$$

$$=\frac{-6\pm\sqrt{16\cdot6}}{6}$$

$$=\frac{-6\pm4\sqrt{6}}{6}$$

$$=\frac{2(-3\pm 2\sqrt{6})}{6}$$

$$=\frac{-3\pm2\sqrt{6}}{3}$$

Find all the real solutions of the equation.

$$\sqrt{4x - 3} = 5$$

Solution

Raise both sides of the equation to the second power to remove the radical symbol.

$$\left(\sqrt{4x-3}\right)^2 = (5)^2$$

$$4x - 3 = 25$$

+3 + 3

$$4x = 28$$

$$\frac{4x}{4} = \frac{28}{4}$$

$$x = 7$$