Week 12

Sections 5.2

HW12: 6, 8, 12, 16, 24, 26, 28, 46, 50, 64 (p. 417-418)

Review Exercises

Find the exact value of the trigonometric function at the given real number.

- a) $\sin \frac{7\pi}{6}$ b) $\cos \frac{17\pi}{6}$ c) $\tan \frac{7\pi}{6}$

Solution

- a) $\sin \frac{7\pi}{6} = -\frac{1}{2}$ b) $\cos \frac{17\pi}{6} = -\frac{\sqrt{3}}{2}$ c) $\tan \frac{7\pi}{6} = \frac{\sqrt{3}}{3}$

Find the exact value of the trigonometric function at the given real number.

- a) $\sin \frac{11\pi}{4}$
- b) $\sin\left(-\frac{\pi}{4}\right)$
- c) $\sin \frac{\hat{5}\pi}{4}$

Solution

- a) $\sin \frac{11\pi}{4} = \frac{\sqrt{2}}{2}$ b) $\sin \left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$ c) $\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$

Find the exact value of the trigonometric function at the given real number.

a)
$$\sin \frac{7\pi}{3}$$

b) $\csc \frac{7\pi}{3}$
c) $\cot \frac{7\pi}{3}$

b)
$$\csc \frac{7\pi}{3}$$

c)
$$\cot \frac{7\pi}{3}$$

Solution

a)
$$\sin \frac{7\pi}{3} = \frac{\sqrt{3}}{2}$$

b) $\csc \frac{7\pi}{3} = \frac{2\sqrt{3}}{3}$
c) $\cot \frac{7\pi}{3} = \frac{\sqrt{3}}{3}$

b)
$$\csc \frac{7\pi}{3} = \frac{2\sqrt{3}}{3}$$

c)
$$\cot \frac{7\pi}{3} = \frac{\sqrt{3}}{3}$$

Find the exact value of the trigonometric function at the given real number.

a)
$$\cos\left(-\frac{\pi}{6}\right)$$

b) $\csc\left(-\frac{\pi}{3}\right)$
c) $\tan\left(-\frac{\pi}{6}\right)$

b)
$$\csc\left(-\frac{\pi}{3}\right)$$

c)
$$\tan\left(-\frac{\pi}{6}\right)$$

Solution

a)
$$\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

b) $\csc\left(-\frac{\pi}{3}\right) = -\frac{2\sqrt{3}}{\frac{3}{2}}$

b)
$$\csc\left(-\frac{\pi}{3}\right) = -\frac{2\sqrt{3}}{3}$$

c)
$$\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$$

Find the value of each of six trigonometric functions (if it's defined) at the given real number t. Use your answer to complete the table.

$$t = 0$$

Solution

t	sin t	cos t	tan t	csc t	sec t	cot t
0	0	1	0	undefined	1	undefined

Find the value of each of six trigonometric functions (if it's defined) at the given real number t. Use your answer to complete the table.

$$t = \pi$$

Solution

t	sin t	cos t	tan t	csc t	sec t	cot t
π	0	-1	0	undefined	-1	undefined

The terminal point P(x, y) determined by a real number t is given. Find $\sin t$, $\cos t$, and $\tan t$.

 $\left(-\frac{3}{5}, -\frac{4}{5}\right)$

Solution

$$\sin t = -\frac{4}{5}$$

$$\cos t = -\frac{3}{5}$$

$$\tan t = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3}$$

Find the sign of the expression if the terminal point determined by t is in the given quadrant. $\sin t \cos t$, quadrant II

Solution

In quadrant II, $\sin t$ is positive, and $\cos t$ is negative, therefore, their product is negative.

From the information given, find the quadrant in which the terminal point determined by t lies.

 $\sin t > 0$ and $\cos t < 0$

Solution

Quadrant II

Find the values of the trigonometric functions of t from the given information.

$$\sin t = -\frac{4}{5}$$
, terminal point of t is in quadrant IV

Solution

The terminal point determined by t is $P\left(x, -\frac{4}{5}\right)$.

Since *P* is on the unit circle, $x^2 + \left(-\frac{4}{5}\right)^2 = 1$. Solve for *x*.

$$x^2 = 1 - \left(-\frac{4}{5}\right)^2$$

$$x^2 = 1 - \frac{16}{25}$$

$$x^2 = \frac{9}{25}$$

$$x = \pm \frac{3}{5}$$

Since the terminal point is in quadrant IV, $x = \frac{3}{5}$. Thus, the terminal point is $P\left(\frac{3}{5}, -\frac{4}{5}\right)$.

Thus, $\cos t = \frac{3}{5}$, $\sin t = -\frac{4}{5}$, $\tan t = -\frac{4}{3}$, $\csc t = -\frac{5}{4}$, $\sec t = \frac{5}{3}$, $\cot t = -\frac{3}{4}$.