Week 11

Sections 5.1
HW11: 4, 6, 8, 24, 28, 32, 38, 42, 46, 50 (p. 407-408)

	Review Exerci
Show that the point is on the circle.	$\left(\frac{3}{5},-\frac{4}{5}\right)$

We have to show that $x^{2}+y^{2}=1$.

$$
\begin{gathered}
\left(\frac{3}{5}\right)^{2}+\left(-\frac{4}{5}\right)^{2}=1 \\
\frac{9}{25}+\frac{16}{25}=1 \\
\frac{25}{25}=1
\end{gathered}
$$

Show that the point is on the circle.

$$
\left(-\frac{2}{7},-\frac{3 \sqrt{5}}{7}\right)
$$

Solution
We have to show that $x^{2}+y^{2}=1$.

$$
\begin{gathered}
\left(-\frac{2}{7}\right)^{2}+\left(-\frac{3 \sqrt{5}}{7}\right)^{2}=1 \\
\frac{4}{49}+\frac{9 \cdot 5}{49}=1 \\
\frac{4}{49}+\frac{45}{49}=1 \\
\frac{49}{49}=1
\end{gathered}
$$

Show that the point is on the circle.

$$
\left(\frac{\sqrt{5}}{3}, \frac{2}{3}\right)
$$

Solution
We have to show that $x^{2}+y^{2}=1$.

$$
\begin{gathered}
\left(\frac{\sqrt{5}}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}=1 \\
\frac{5}{9}+\frac{4}{9}=1 \\
\frac{9}{9}=1
\end{gathered}
$$

Find the terminal point $P(x, y)$ on the unit circle determined by the given value of t.

$$
t=4 \pi
$$

Solution

Complete two full rotations in the counterclockwise direction, because $4 \pi=2 \pi+2 \pi$.

The terminal point will be $(1,0)$.

Find the terminal point $P(x, y)$ on the unit circle determined by the given value of t.

$$
t=\frac{5 \pi}{4}
$$

Solution

Complete half of a rotation, plus another $1 / 8$ of a rotation (45 degrees) in the counterclockwise direction, because $\frac{5 \pi}{4}=\frac{4 \pi}{4}+\frac{\pi}{4}=\pi+\frac{\pi}{4}$.

The terminal point will be $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.
Find the terminal point $P(x, y)$ on the unit circle determined by the given value of t.

$$
t=\frac{11 \pi}{6}
$$

Solution

The terminal point will be $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$.

Find the reference number for each value of t.
a) $t=\frac{4 \pi}{3}$
b) $t=\frac{5 \pi}{3}$
c) $t=-\frac{7 \pi}{6}$
d) $t=3.5$

Solution

a) $\bar{t}=\frac{4 \pi}{3}-\pi=\frac{\pi}{3}$
b) $\bar{t}=2 \pi-\frac{5 \pi}{3}=\frac{\pi}{3}$
c) $\bar{t}=\frac{7 \pi}{6}-\pi=\frac{\pi}{6}$
d) $\bar{t}=3.5-\pi \approx 0.36$

Find a) the reference number for each value of t and b) the terminal point determined by t.

$$
t=\frac{11 \pi}{6}
$$

Solution
a) $\bar{t}=2 \pi-\frac{11 \pi}{6}=\frac{\pi}{6}$
b) $P\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

Find a) the reference number for each value of t and b) the terminal point determined by t.

$$
t=-\frac{2 \pi}{6}
$$

Solution
a) $\bar{t}=\pi-\frac{2 \pi}{3}=\frac{\pi}{3}$
b) $P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

Find a) the reference number for each value of t and b) the terminal point determined by t.

$$
t=\frac{41 \pi}{6}
$$

Solution
a) $\bar{t}=7 \pi-\frac{41 \pi}{6}=\frac{\pi}{6}$
b) $P\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

