Learning Plan 3

Chapter 3

Questions 1 and 2

(page 82)
To convert a decimal into a percent, you must move the decimal point two places to the right.

For example:

$$
\begin{aligned}
0.72 & =72 \% \\
5.46 & =546 \% \\
3.0842 & =308.42 \%
\end{aligned}
$$

Question 3

Write the fraction as a decimal.

$$
\frac{2}{5}
$$

Solution
Use the calculator: $2 \div 5=0.4$

Question 4
(page 84)
To convert a percent to a decimal, you must move the decimal point two places to the left.
For example:

$$
\begin{gathered}
25 \%=0.25 \\
1.3 \%=0.013 \\
270 \%=2.7
\end{gathered}
$$

Question 5

(pages 82-84)
Complete the table:

Fraction	Decimal	Percent
$\frac{1}{20}$		

Solution:

Fraction	Decimal	Percent
$\frac{1}{20}$	Use the calculator:	We must move the decimal
	$1 \div 20=0.05$	point two places to the right:
		$0.05=5 \%$
		So, the percent is: 5%

Question 6

(pages 82-84)
Complete the table:

Fraction	Decimal	Percent
	0.024	

Solution:

Fraction	Decimal	Percent
Cif you have 3 digits after the decinal point, you will write 1000 in the denominator)	0.024	We have to move the decimal point two places to the right:
$=\frac{24 \div 8}{1000 \div 8}=\frac{3}{125}$		$0.024=2.4 \%$
So, the fraction is:		So, the percent is:
$\frac{3}{125}$		2.4%

Question 7

(pages 82-84)
Complete the table:

Fraction	Decimal	Percent
	4.5	

Solution:

Fraction	Decimal	Percent
$4.5=4 \frac{5}{10}$	4.5	We have to move the decimal point two places to the right:
$=4 \frac{5 \div 5}{10 \div 5}$		
$=\frac{4 \cdot 2+1}{2}$		$4.5=450 \%$
$=\frac{9}{2}$		
$\frac{9}{2}$		
So the the percent is:		

Questions 9 and 10

On page 89 in the textbook you have an important formula:

$$
\begin{gathered}
P=R \times P \\
\text { Part }=\text { Rate } \times \text { Base }
\end{gathered}
$$

Example: You want to find out what is 30% out of $\$ 200$.
According to the formula, you must multiply the Percent by the Base, to get the Part (and remember, percent has to be in decimal form):

$$
\begin{gathered}
\text { Part }=0.3 \cdot \$ 200 \\
\text { Part }=\$ 60
\end{gathered}
$$

When you have a problem, how do you know what number in the base, what number is the rate, and what number is the part?

Base	Rate	Part
Base represents the total, starting point, the original quantity, and many times has the word "of" in front of the number.	Rate will have the \% percent symbol next to the number.	Part is the amount of the total, and many times you will see the word "is" or
For example:	30%	"equals" in front of the number.
30% of $\$ 200$.	For example: 30% of $\$ 200$ is $\$ 60$	
So, $\$ 200$ is the base. $\$ 60$ is the part.		

Question 11 and 12

(page 96)
To find the base, you have to divide the part by the rate. See the formula on page 96:

$$
\text { Base }=\frac{\text { Part }}{\text { Rate }}
$$

Example:

70 is 35% of what number?
Solution
Make sure to convert percent into a decimal: $35 \%=0.35$

$$
\begin{gathered}
\text { Base }=\frac{\text { Part }}{\text { Rate }} \\
=\frac{70}{0.35} \\
=200
\end{gathered}
$$

Question 13

(p. 102-103)

To find the rate, you have to divide the part by the base. See the formula on page 102:

$$
\text { Rate }=\frac{\text { Part }}{\text { Base }}
$$

Example:

What \% of 96 is 24 ?
Solution

$$
\begin{aligned}
& \qquad \begin{aligned}
\text { Rate } & =\frac{\text { Part }}{\text { Base }} \\
& =\frac{24}{96} \\
& =0.25
\end{aligned} \\
& \text { Make sure to convert } \\
& =
\end{aligned}
$$

Question 14

(p. 102-103)

To find the rate, you have to divide the part by the base. See the formula on page 102:

$$
\text { Rate }=\frac{\text { Part }}{\text { Base }}
$$

Example:
80 phones is what percent of 20 phones?

Solution

Notice that in this problem the part is larger than the base. This will give you an answer more than 100\%.

$$
\begin{aligned}
& \text { Rate }=\frac{\text { Part }}{\text { Base }}=\frac{80}{20}=4 \\
& \text { Make sure to convert the decimal into percent. } \\
& =400 \%
\end{aligned}
$$

Questions 15 and 17

(p. 110-113)

The part after increase is $\$ 32.5$.
The rate of increase is 30%.
Find the base.

Solution

The problem says that you had a certain amount of dollars in the beginning, but after this amount was increased by 30%, now you have $\$ 32.5$.

So, in the beginning your amount represented 100%. But once it increased by 30%, the new amount (after increase) represents:

$$
100 \%+30 \%=130 \%=1.3
$$

To find the base:

$$
\begin{gathered}
\text { Base }=\frac{\text { Part }}{\text { Rate }} \\
=\frac{32.5}{1.3} \\
=\$ 25
\end{gathered}
$$

Question 16

(p. 110-113)

The part after decrease is $\$ 15,000$.
The rate of decrease is 20%.
Find the base.

Solution

The problem says that you had a certain amount of dollars in the beginning, but after this amount was decreased by 20%, now you have $\$ 15,000$.

So, in the beginning your amount represented 100%. But once it decreased by 20%, the new amount (after decrease) represents:

$$
100 \%-20 \%=80 \%=0.8
$$

To find the base:

$$
\begin{gathered}
\text { Base }=\frac{\text { Part }}{\text { Rate }} \\
=\frac{15,000}{0.8} \\
=\$ 18,750
\end{gathered}
$$

Question 18

In 2001, the population in a town was 11% more than it was in 2000 . If the population was 21,690 in 2002, which was 10% more than 2001, find the population in 2000.

Solution

$$
100 \%+10 \%=110 \%=1.1
$$

The population in 2001:

$$
\begin{gathered}
\text { Base }=\frac{\text { Part }}{\text { Rate }}=\frac{21,690}{1.1}=19718.1818 \ldots \\
100 \%+11 \%=111 \%=1.11
\end{gathered}
$$

The population in 2000:

$$
\begin{gathered}
\text { Base }=\frac{\text { Part }}{\text { Rate }}=\frac{19718.1818}{1.11} \approx 17,764 \\
\quad \text { (rounded to the nearest whole number) }
\end{gathered}
$$

Question 19

Complete the table.
Round dollar amounts to the nearest cent and percentages to the nearest tenth.

Company	Stock price last year	Stock price this year	\% Change from Last Year
A	$\$ 362.45$	$\$ 587.41$	
B	$\$ 78.32$		6.8%
C		$\$ 89.60$	8.0%
D	$\$ 65.82$		14.5%
	BASE	PART AFTER INCREASE	RATE of INCREASE

Solution

A.

$$
\text { Rate }=\frac{\text { Part }}{\text { Base }}=\frac{587.41}{362.45} \approx 1.62066 \approx 162.1 \%
$$

So, if the stock last year represented 100%, and this year represents 162.1%, the percent change from last year is $\mathbf{6 2 . 1} \%$. (hecause $162.1 \%-100 \%=62.1 \$$)
B.

$$
\begin{aligned}
& 100 \%+6.8 \%=106.8 \%=1.068 \\
& \text { Part }=\text { Rate } \times \text { Base } \\
& =1.068 \times 78.32 \\
& =83.64576 \\
& \quad \approx 83.65
\end{aligned}
$$

C.

$$
\begin{gathered}
100 \%+8 \%=108 \%=1.08 \\
\text { Base }=\frac{\text { Part }}{\text { Rate }} \\
=\frac{89.60}{1.08} \\
\approx 82.96296 \\
\approx 82.96
\end{gathered}
$$

D.

$$
\begin{aligned}
100 \%+ & 14.5 \%=114.5 \%=1.145 \\
\text { Part } & =\text { Rate } \times \text { Base } \\
& =1.145 \times 65.82 \\
& =75.3639 \\
& \approx 75.36
\end{aligned}
$$

