Exponential Functions

Definition of an Exponential Function

An exponential function with base b is defined by $f(x)=b^{x}$, where $b>0, b \neq 1$, and x is any real number.

Examples:

$$
f(x)=4^{x}, \quad g(x)=10^{5 x}, \quad h(x)=-\left(\frac{2}{3}\right)^{x-2}
$$

Note, that in exponential functions, x is part of the exponent.

Graphs of Exponential Functions		
$f(x)=a^{x}$ for $a>1$	$f(x)=a^{x}$ for $0<a<1$	

Number e

Number e is an irrational number and the approximate value is $e \approx 2.718281827$...
The number e is called natural base and is defined as the value that $\left(1+\frac{1}{n}\right)^{n}$ approaches as n gets larger and larger.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

The number e was named by the Swiss mathematician Leonard Euler (1707-1783).

Example of Graphing an Exponential Function

Graph the exponential function $y=3^{x}$.

Solution

Construct a table with values for x and y. Then plot the points to sketch the graph.

x	y
-2	$y=3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
-1	$y=3^{-1}=\frac{1}{3^{1}}=\frac{1}{3}$
0	$y=3^{0}=1$
1	$y=3^{1}=3$
2	$y=3^{2}=9$

