Inverse Functions

Definition of an Inverse Function

The functions f and f^{-1} (read "f-inverse") are inverses of each other if $f(f^{-1}(x)) = x$ for every x in the domain of f^{-1} and $f^{-1}(f(x)) = x$ for every x in the domain of f.

To find the inverse of a function, we need to interchange *x* and *y*.

$$f(x) = y \quad \Leftrightarrow \quad f^{-1}(y) = x$$

An Example that Verifies that a Function is an Inverse of the Other

Show that the function f(x) = 3x + 5 is the inverse of the function $g(x) = \frac{x-5}{3}$.

Solution

According to the definition, two functions are inverses of each other if $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

We need to show that the composition of both f and g, and g and f equals x.

$$f(g(x)) = 3\left(\frac{x-5}{3}\right) + 5 = x - 5 + 5 = x$$

$$g(f(x)) = \frac{3x+5-5}{3} = \frac{3x}{3} = x$$

So, these two functions are inverses of each other.

How to Find the Inverse of a Function	
Example 1	
Find the inverse of the function $f(x) = 3x + 1$	
<u>Step 1</u>	<u>Step 2</u>
Replace $f(x)$ with y .	Interchange x and y.
f(x) = 3x + 1 $y = 3x + 1$	x = 3y + 1
Step 3	Step 4
Solve for <i>y</i> .	Replace y with $f^{-1}(x)$.
$\begin{array}{c} x = 3y + 1 \\ -1 & -1 \end{array}$	$f^{-1}(x) = \frac{x}{3} - \frac{1}{3}$
x - 1 = 3y	
$\frac{x-1}{2} = \frac{3y}{2}$	So, the inverse of $f(x) = 3x + 1$ is
$\frac{x}{3} - \frac{1}{3} = y$	$f^{-1}(x) = \frac{x}{3} - \frac{1}{3}$
The graph of an inverse function is symmetric to the given function with respect to the line $f(x) = x$.	$f(x) = 3x + 1$ $f(x) = x$ $f^{-1}(x) = \frac{x}{3} - \frac{1}{3}$

How to Find the Inverse of a Function	
Example 2	
Find the inverse of the function $f(x) = \frac{2x+5}{x-4}$	
Step 1 Replace $f(x)$ with y . $f(x) = \frac{2x + 5}{x - 4}$ $y = \frac{2x + 5}{x - 4}$	Step 2 Interchange x and y. $x = \frac{2y + 5}{y - 4}$
Solve for y. $(y-4)(x) = \left(\frac{2y+5}{y-4}\right)(y-4)$ $xy - 4x = 2y + 5$ $xy - 2y = 4x + 5$ $y(x-2) = 4x + 5$ $\frac{y(x-2)}{x-2} = \frac{4x+5}{x-2}$ $y = \frac{4x+5}{x-2}$	Step 4 Replace y with $f^{-1}(x)$. $f^{-1}(x) = \frac{4x+5}{x-2}$ So, the inverse of $f(x) = \frac{2x+5}{x-4}$ is $f^{-1}(x) = \frac{4x+5}{x-2}$
The graph of an inverse function is symmetric to the given function with respect to the line $f(x) = x$.	

Not all the functions have an inverse function. A function has an inverse, if there is no horizontal line that crosses the function's graph in more than one point.