Inverse Functions

Definition of an Inverse Function

The functions f and f^{-1} (read " f-inverse") are inverses of each other if $f\left(f^{-1}(x)\right)=x$ for every x in the domain of f^{-1} and $f^{-1}(f(x))=x$ for every x in the domain of f.

To find the inverse of a function, we need to interchange x and y.

$$
f(x)=y \quad \Leftrightarrow \quad f^{-1}(y)=x
$$

An Example that Verifies that a Function is an Inverse of the Other

Show that the function $f(x)=3 x+5$ is the inverse of the function $g(x)=\frac{x-5}{3}$.

Solution

According to the definition, two functions are inverses of each other if $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

We need to show that the composition of both f and g, and g and f equals x.
$f(g(x))=3\left(\frac{\boldsymbol{x}-\mathbf{5}}{\mathbf{3}}\right)+5=x-5+5=x$
$g(f(x))=\frac{\mathbf{3 x + 5}-5}{3}=\frac{3 x}{3}=x$
So, these two functions are inverses of each other.

How to Find the Inverse of a Function

Example 1

Find the inverse of the function $f(x)=3 x+1$

Step 1
Replace $f(x)$ with y.
$\qquad$$f(x)=3 x+1$ $y=3 x+1$

Step 3
Solve for y.

$$
\begin{aligned}
& x=3 y+1 \\
& -1 \quad-1 \\
& x-1=3 y \\
& \frac{x-1}{3}=\frac{3 y}{3} \\
& \frac{x}{3}-\frac{1}{3}=y
\end{aligned}
$$

The graph of an inverse function is symmetric to the given function with respect to the line $f(x)=x$.

Step 2
Interchange x and y.

$$
x=3 y+1
$$

Step 4
Replace y with $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{x}{3}-\frac{1}{3}
$$

So, the inverse of $f(x)=3 x+1$ is

$$
f^{-1}(x)=\frac{x}{3}-\frac{1}{3}
$$

How to Find the Inverse of a Function

Example 2

Find the inverse of the function $f(x)=\frac{2 x+5}{x-4}$

Step 1

Replace $f(x)$ with y.

$$
\begin{gathered}
f(x)=\frac{2 x+5}{x-4} \\
y=\frac{2 x+5}{x-4}
\end{gathered}
$$

Step 3
Solve for y.

$$
\begin{gathered}
(y-4)(x)=\left(\frac{2 y+5}{y-4}\right)(y-4) \\
x y-4 x=2 y+5 \\
x y-2 y=4 x+5 \\
y(x-2)=4 x+5 \\
\frac{y(x-2)}{x-2}=\frac{4 x+5}{x-2} \\
y=\frac{4 x+5}{x-2}
\end{gathered}
$$

Step 2
Interchange x and y.

$$
x=\frac{2 y+5}{y-4}
$$

Step 4
Replace y with $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{4 x+5}{x-2}
$$

So, the inverse of $f(x)=\frac{2 x+5}{x-4}$ is

$$
f^{-1}(x)=\frac{4 x+5}{x-2}
$$

The graph of an inverse function is symmetric to the given function with respect to the line $f(x)=x$.

How to Find the Inverse of a Function			
Example 3 Find the inverse of the function $f(x)=x^{2}, x \geq 0$			
Step 1 Replace $f(x)$ with y. $\begin{aligned} & f(x)=x^{2} \\ & y=x^{2} \end{aligned}$	Step 2 Interchan	x and y. $x=y^{2}$	
Step 3 Solve for y. $\begin{gathered} (x)^{\frac{1}{2}}=\left(y^{2}\right)^{\frac{1}{2}} \\ \sqrt{x}=y \end{gathered}$	Step 4 Replace So,	with $f^{-1}(x)$. $\begin{gathered} y=x \\ f^{-1}(x)=\sqrt{x} \end{gathered}$ inverse of $f(x)=$ $f^{-1}(x)=\sqrt{x}$	$x^{2}, x \geq 0$ is
The graph of an inverse function is symmetric to the given function with respect to the line $f(x)=x$.	-5 \qquad	$f(x)=x^{2}, x \geq 0$	$f(x)=x$ $f^{-1}(x)=\sqrt{x}$

Not all the functions have an inverse function.

A function has an inverse, if there is no horizontal line that crosses the function's graph in more than one point.

