Solving Formulas

Definition of a Formula

A formula is an equation that contains more than one variable.
To solve a formula means to isolate one of the variables on one side.
Some Examples of Formulas
$A=\frac{h}{2}(a+b)$,
$D=R T, \quad C=\frac{5}{9}(F-32)$

Examples of Solving Formulas

Solve the formula for R.

$$
D=R T
$$

Solution

Divide both sides by T.

$$
\frac{D}{T}=\frac{R T}{T}
$$

Cancel T on the right side.

$$
\frac{D}{T}=R
$$

or

$$
R=\frac{D}{T}
$$

Solve the formula for W.

$$
P=2 L+2 W
$$

Solution
Subtract $2 L$ from both sides.

$$
\begin{gathered}
P=2 L+2 W \\
-2 L-2 L \\
P-2 L=2 W
\end{gathered}
$$

Divide both sides by 2 .

$$
\begin{gathered}
\frac{P-2 L}{2}=\frac{2 W}{2} \\
W=\frac{P-2 L}{2}
\end{gathered}
$$

or

$$
W=\frac{P}{2}-L
$$

Solve the formula for R.

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Solution

Multiply both sides

by the least common denominator $R R_{1} R_{2}$.

$$
\begin{aligned}
R R_{1} R_{2}\left(\frac{1}{R}\right) & =\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) R R_{1} R_{2} \\
R_{1} R_{2} & =R R_{2}+R R_{1}
\end{aligned}
$$

On the right side, factor out R.

$$
R_{1} R_{2}=R\left(R_{2}+R_{1}\right)
$$

Divide both sides by $R_{2}+R_{1}$

$$
\frac{R_{1} R_{2}}{R_{2}+R_{1}}=\frac{R\left(R_{2}+R_{1}\right)}{R_{2}+R_{1}}
$$

Cancel $R_{2}+R_{1}$ on the right side.

$$
\frac{R_{1} R_{2}}{R_{2}+R_{1}}=R
$$

or

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Solve the formula for S.

$$
S=\frac{C}{1-r}
$$

Solution

Multiply both sides
by the least common denominator $1-r$.

$$
(1-r) S=\frac{C}{1-r}(1-r)
$$

Cancel 1 - r on the right side.

$$
(1-r) S=C
$$

Divide both sides by $1-r$.

$$
\frac{(1-r) S}{1-r}=\frac{C}{1-r}
$$

Cancel 1 - r on the left side.

$$
S=\frac{C}{1-r}
$$

Solve the formula for t.

$$
A=P(1+r t)
$$

Solution

Use the distributive property on the right side to remove the parentheses.

$$
A=P+P r t
$$

Subtract P from both sides.

$$
\begin{gathered}
A=P+P r t \\
-P-P \\
A-P=P r t
\end{gathered}
$$

Divide both sides by Pr .

$$
\frac{A-P}{P r}=\frac{P r t}{P r}
$$

Cancel Pr on the right side.

$$
\frac{A-P}{P r}=t
$$

or

$$
t=\frac{A-P}{P r}
$$

