Intervals and Interval Notation

Intervals

A Finite Interval is a set of real numbers that lie between two points, called endpoints. An Infinite Interval is a set of real numbers in which at least one endpoint is missing.

To describe intervals, we use brackets or parentheses.

Brackets and Parentheses in the Intervals

Brackets [] indicate that the endpoints belong (are included) to the interval. Parentheses () indicate that the endpoints do not belong (are not included) to the interval.

Finite Intervals										
Interval	Description	Set-Builder Notation	Graph							
[a, b]	The set of real numbers between <i>a</i> and <i>b</i> inclusive.	$\{x a \le x \le b\}$	↓ -∞	a	b	→ ∞				
(a, b)	The set of real numbers between <i>a</i> and <i>b</i> .	$\{x a < x < b\}$	↓ -∞	a	b	→ ∞				
[a, b)	The set of real numbers greater than or equal to <i>a</i> and less than <i>b</i> .	$\{x a \le x < b\}$	↓ -∞	a	b	→ ∞				
(a, b]	The set of real numbers greater than a and less than or equal to b .	$\{x a < x \le b\}$	↓ -∞	e a	b	→ ∞				

Infinite Intervals									
Interval	Description	Set-Builder Notation	Graph						
[<i>a</i> ,∞)	The set of real numbers greater than or equal to <i>a</i> .	$\{x x \ge a\}$	↓ -∞	a	→ ∞				
(<i>a</i> ,∞)	The set of real numbers greater than <i>a</i> .	$\{x x > a\}$	↓ -∞	a	→ ∞				
$(-\infty, b)$	The set of real numbers less than <i>b</i> .	$\{x x < b\}$	↓ -∞	b	→ ∞				
(<i>−∞</i> , <i>b</i>]	The set of real numbers less than or equal to <i>b</i> .	$\{x x \le b\}$	↓ -∞	b	→ 8				
(−∞,∞)	The set of all the real numbers.	$\{x x \in R\}$	↓ -∞	<>	→ ∞				

Note:

Let [2,7) be a finite interval.

The bracket shows that number 2 is included, and the parenthesis shows that number 7 is not included.

So, how many numbers does this interval contain?

If we say, that the interval contains 5 numbers: 2, 3, 4, 5, 6, we will be wrong, because by definition, an interval is a set of real numbers, and the real numbers include the integers, as well as the fractions and the decimals.

So, from 2 up to 7 there are infinitely many numbers (when we count the integers, fractions and decimals).