The Difference Between the Rational Numbers and the Irrational Numbers Explained

The Rational Numbers Q,

are the numbers that can be written as a ratio (fraction) of two integers.
They can be in the form of fractions, integers, terminating decimals, or repeating decimals.

In form of fractions.	$\frac{3}{5}$ is a rational number, because in this fraction, 3 is an integer, and 5 is an integer.	$\frac{-1}{4}$ is a rational number, because in this fraction, -1 is an integer, and 4 is an integer.
In form of integers.	is a rational number, because we can write it as a fraction, $\frac{7}{1}$ and in this fraction, $\mathbf{7}$ is an integer, and 1 is an integer.	-9 is a rational number, because we can write it as a fraction, $\frac{-9}{1}$ and in this fraction, -9 is an integer, and 1 is an integer.
In form of terminating decimals.	0.25 is a rational number, because we can write it as a fraction, $0.25=\frac{25}{100}=\frac{1}{4}$ and in this fraction, 1 is an integer, and 4 is an integer.	0.713 is a rational number, because we can write it as a fraction, $0.713=\frac{713}{1000}$ and in this fraction, 713 is an integer, and 1000 is an integer.
In form of repeating decimals.	$0.636363 \ldots$ is a rational number, because we can write it as a fraction, $0.636363 \ldots=\frac{7}{11}$ and in this fraction, 7 is an integer, and 11 is an integer.	$0.33333 \ldots$ is a rational number, because we can write it as a fraction, $0.33333 \ldots=\frac{1}{3}$ and in this fraction, 1 is an integer, and 3 is an integer.

The Irrational Numbers I,

are the numbers that cannot be written as a ratio (fraction) of two integers, and they are represented by decimals that never terminate nor repeat.

	$\sqrt{5}=2.23606797 \ldots$
Decimals that	$\sqrt{3}=1.7320508 \ldots$
never terminate	$\sqrt{12}=3.46410161 \ldots$
nor repeat.	$\pi=3.14159265 \ldots$
	$e=2.7182818284 \ldots$

In conclusion...

If a decimal is terminating or repeating, then the decimal is a rational number. If a decimal is neither repeating not terminating, then the decimal is an irrational number.

More Examples

4.723 is a terminating decimal, therefore the decimal is a rational number.
0.9 is a terminating decimal, therefore the decimal is a rational number.
$0.454545454545 \ldots$ is a repeating decimal, therefore the decimal is a rational number.
$6.274274274274274 \ldots$ is a repeating decimal, therefore the decimal is a rational number.
3.1415926535897932 ... is neither repeating not terminating, therefore the decimal is an irrational number. $4.5825756949 \ldots$ is neither repeating not terminating, therefore the decimal is an irrational number.

